

Answer all the questions

1. In the equation $v = at + \frac{b}{t+c}$, v is velocity and t is time. The dimensions of a,b, c are

	a	b	c
1)	\mathbf{L}^2	T	LT-2
2)	LT ⁻²	LT	T
3)	LT^2	L	T
4)	L	LT	T^2
5)	LT ⁻¹	L	T

- 2. If the percentage error of measuring the radius of a sphere is 1%, what is the percentage error of its volume?
 - 1) 1%
- 2) 2% 3) 3% 4) 4%
- 5) 5%
- 3. The length of a rod is measured using a ruler and its diameter is measured using a venire caliper. The correct volume of the rod is given as,
 - 1) 16.2481 cm³
- 2) 16.248 cm³ 3) 16.24 cm³
- 4) 16.2 cm^3
- 5) 16 cm³

- 4. The correct dimension of a light year is,

- 1) M^0L^0T 2) M^0LT^{-1} 3) M^0LT^0 4) $M^0L^0T^{-1}$ 5) MLT^{-1}
- 5. The displacement of a particle which undergoes simple harmonic motion is given by y=0.3sin(220t+0.64) .t and y are measured in seconds and meters respectively. The frequency and the maximum velocity of the motion would be,
 - (1) 35H_z, 66ms⁻¹
- (2) 45H_z, 66ms⁻¹
- (3) 58H_z, 113ms⁻¹
- (4) $35H_z$, $132ms^{-1}$ (5) $35H_z$, $135ms^{-1}$
- 6. The best instrument to measure the diameter of a smooth rubber tube if its' outer diameter is approximately 1cm,
 - 1) Micrometer screw gauge
- 2) traveling telescope
- 3) venire caliper

4) meter ruler

5) centimeter ruler

7. \	What is the frictional force between	n B and the table if the coef	ficient of fricti	on is 0.8
	1) 40N 2) 20 N	3) 32N	0	4kg B
	4) 16N 5) 48N		A 2kg	C 4kg
8	A circular disk in a horizontal planingular speed is varying, which question which is at the circumference of the	uantity and the direction o		
	1) Angular velocity	2) angular acceleration	3) angular m	omentum
	4) centripetal acceleration	5) resultant acceleration		
9. 1	f the number 56 is observed by a	telescope, you would see,		
	1) 92 2) 99	3) 95	4) 62	56 (8
	An object of mass 9kg explodes particle. If the speed of the small p			
	1) 30 J 2) 25J	3) 40J	4) 75 J	5) 4 5J
11	A body is in equilibrium under the	action of three coplanar for	ces. Then,	
	A) They must meet in a point.	48 cm 3) 16.24 cm		
	B) their horizontal and vertical	al components must be equa	l.	
	C) Total moment of forces are	ound any point in the plane i	is zero.	
	True sentences from the ab	oove		
	1) A only 2) B onl	y 3) C only 4) A	A and C only	5) none

- 12. person is riding a bicycle and stops paddling suddenly. Then,
 - 1) The direction of frictional force acting on wheels will be changed.
 - 2) The direction of frictional force on front wheel will be changed .
 - 3) The direction of frictional force on back wheel will be changed.
 - 4) The direction of frictional force on both the wheels will be changed
 - 5) None of the above

- 13. Two objects of each mass m are placed at (-a, 0) and (+a,0). The masses are connected with a string. A force F is applied on a point point as shown in the figure so that the masses move towards each other. In an instant where the masses at (-x, 0) and (+x,0) what is the acceleration of each object,

 - 1) $\frac{F}{m} \frac{x}{\sqrt{a^2 x^2}}$ 2) $\frac{F}{m} \frac{\sqrt{a^2 x^2}}{x}$ 3) $\frac{Fx}{2m\sqrt{a^2 x^2}}$
 - 4) $\frac{F}{2m}\sqrt{\frac{a^2-x^2}{x}}$ 5) $\frac{F}{m}\frac{(a^2-x^2)}{x}$

- 14. A closed straight tube of length L with a liquid of mass M rotates around an end as shown in the figure. If the angular velocity of the tube is ω , what is the force acting on the other end of the tube,
- 2) $2ML\omega^2$
- 3) $\frac{ML\omega^2}{4}$

- 4) $ML\omega^2$
- 5) $4ML\omega^2$

15. The variation of horizontal force acting on an object of mass 2kg which is on a rough surface is given by the line x as shown in the figure. Then the variation of frictional force on the object with time is given by y.

The velocity of the object at 20s is,

- 1) 10ms⁻¹
- 2) 20 ms⁻¹
- 3) 30 ms⁻¹

- 4) 40 ms⁻¹
- 5) 45 ms⁻¹

- 16. The diagram shows the variation of acceleration with the time. If the velocity at 5s is 5ms⁻¹ what is the velocity at 15s,

 - 1) 5 ms⁻¹ 2) 20 ms⁻¹
- 3) 25 ms⁻¹

- 4) 40 m
- 5) 45 ms⁻¹

- 17. A motor cycle of mass 200kg with the rider starts from the rest and moves with a uniform acceleration. The velocity of the motor cycle after 20s is 10ms-1. If the frictional force against the motion is 50N what is the efficiency of the engine after 10s.
 - 1) 0.15kW
- 2) 0.60 kW
- 3) 0.75kW
- 4) 1.5 kW
- 5) 7.5 kW

18. A steady flow of water in a horizontal tube of varying cross sectional area is shown below. The water level in vertical tube P and R are shown and the water level in Q is not shown.

Consider the following statements.

- A) Speed of water at Q is greater than at P and R.
- B) Speed of water at P is greater than the speed at R.

- C) The water level in the vertical tube at O is greater than that at P and R.
 - 1) A is true
- 2) A and B are true
- 3) A and C are true

- 4) B and C are true
- 5) A.B. and C are true
- 19. A solid sphere is attached to the bottom of the container of height 2h is half-immersed as shown in the figure. The water is poured into the container so that it will immerse completely in the water. Then the height of the water in the container is,
 - 1) h/2
- 2) h
- 3) 2h

- 4) 2h/3
- 5) h/4

- 20. Figure shows a liquid discharging in a large tank from hole punched at a distance h below the water level .The tank is filled with water to a height H. The distance from the foot of the tank at which the stream strikes the floor is L. The value of L is,
 - 1) $L = \sqrt{h(H-h)/2}$
- 2) $L = \sqrt{2 h (H h)}$
- 1) $L = \sqrt{h(H-h)/2}$ 3) $L = 2\sqrt{h(H-h)}$
- 4) $L = 4 \sqrt{h(H-h)}$
- 4) L = h(H h) / 2

- 21. The figure shows an object moves along PQ at an angle of α with the horizontal floor. Then it moves along the frictionless surface QR at an angle of 2 α . If he collision at Q is negligible,
 - 1) $t_{PO} = t_{OR}$
- 2) $t_{PO} < t_{OR}$

5) 2 t PO=t OR

- 22. A uniform rod of mass M and length L is hinged smoothly at a point so that the rod can be rotated around the point. Then the moment of inertia of the rod about the point is 1/3 ML2 The rod is kept horizontally and released from rest. At which point on the rod away from its hinged point will the linear acceleration be the same as its gravitational acceleration.
 - 1) 2/3L
- 2) 1/6L
- 3) 1/3L
- 4) 3/4L
- 5) L/2
- 23. The length of a rod is 2m. Two strings of lengths 1m and $\sqrt{3}$ m are attached to the ends of the rod and the free ends of the strings are tightened with a nail in a ceiling. If the rod is an equilibrium position, the angle inclined with the vertical axis is,
 - 1) 12°
- $2)30^{0}$
- $3)45^{0}$
- $4)50^{\circ}$
- $5)60^{\circ}$

24. An object is moving in a circular path of radius 1m with a uniform velocity of V.If difference of velocities between any two points is V, how much time taken to move between two points,

 $2) \pi/2v$ 3) $\pi/6v$ 4) $2 \pi/v$ 5) $\pi/4v$

25. A solid sphere of mass 2kg is attached to the bottom of a container of water by a string and the system accelerates vertically upwards at an acceleration of 2 ms⁻¹. The tension of the string is ,(the density of water is 1000kgm⁻³ and density of material of the sphere is 500 kgm⁻³)

1) 20 N

2) 10N

3) 24N

4) 12 N

5) 18 N

- 26. The velocity time graph of objects A and B are shown in the same diagram. The velocity of A relative to B with time (t) is best represented by,

27. The diagram shows the two wooden blocks immersed in the water using two (x and y) metal spheres. If the relative density of the spheres is s the ratio of volumes of x and y is,

1) 1-s

2) (s-1)/s

4) 1/s

28. A rod of length L is slipping freely along the incline and the horizontal surface .If the velocity at B in an instant is v, what is the velocity at A at that time.

1) $\frac{v \sin \alpha}{\sin \beta}$ 2) $\frac{v \cos \alpha}{\cos \beta}$

3) $v \cos(\alpha - \beta)$

4) $v \cos (\alpha + \beta)$ 5) $V \sin \alpha \sin \beta$

29. The masses 4m, m and m are placed on the vertices of an equilateral triangle ABC. The most possible point of the center of gravity of the system is,

1) B

4) E

5) F

30. An ice cube of side 20cm which is at 0°C is floating in water. The density of ice and water is 900kgm⁻³ and 1000kgm⁻³ respectively. The change of gravitational potential energy when the ice cube is melted completely is,

1) 0.36J

2) 0.72J

3) 0.75J

4) 0.9 J

5) 1 J

Part B - Essay

Answer only 2 questions

01) (a) The diagram below shows that the two students are riding bumper cars in a play area. The mass of the bumper car (A) with the rider is 200kg and the mass of B with the rider is 250kg.

When B is 15m away from A and initially at rest ,A is moving with the velocity of 2ms⁻¹ towards B

- i. The rider A is accelerating with 1.5ms⁻² until it reaches the velocity of 5ms⁻¹ Then it continues the motion with a constant velocity of 5ms⁻¹ until it hits with the car(B). Find the total time taken by the car(A) to move 15m.
- ii. The bumper car (B) moves to the right with the velocity of 4.8ms⁻¹ after the collision.
 - (a) Find the velocity of A after the collision
 - (b) Find the direction of movement of A after the collision.
- iii. Is this an elastic collision? Explain your answer.

As shown in the above figure a model of rocket of mass 0.250kg starts moving upwards after the engine starts its combustion at t=0. The engine generates an impulse of 20Ns in the process of combustion in 2s.After reaching its maximum height the rocket starts to move back to the earth surface using a parachute.

i. To represent the following instances draw and label the forces acting on the rocket.

At combustion of engine

before releasing the parachute

after releasing the parachute

but after the engine stops

- ii. Calculate the mean acceleration of the rocket during the combustion in 2s.
- iii. Calculate the maximum height that the rocket reaches
- iv. After how long that the rocket reaches its maximum height from t=0

(C)

As shown in the above figure a uniform disk is attached to an axel so that the disk can be rotated freely without the friction. A thin uniform rod which is attached to the disk also rotates with the disk. A cube is attached to the end of the rod so that the whole system can be rotated.

Consider the followings,

Disk – mass =3m , radius =R , moment of inertia around the centre I_D = 1.5mR²

Rod – mass=m $% \left(1-1\right) =0$, length 2R , moment of inertia around an end I_{R} – $4/3mR^{2}$

Cube- mass=2m

As shown in the above figure one end of a light string is attached to a wall and the other end is attached to the disk. Then system is at equilibrium so that the rod is inclined in θ_0 to the vertical direction.

Answer the following questions in terms of m,R, θ_0 ,g

Tension of the string

ii. The system(disk, rod and cube) can be rotated freely when the string is cut. Find,

the angular acceleration of the disk

linear acceleration of the cube,

just after cutting the string

iii. The following diagram shows the rotating disk in an instant. Find the linear acceleration of the cube at that instant.

02) a) Figure shows a modified U tube experimental set up to find the density of an oil. The diameter of the uniform U tube is 0.850cm. The level AB of mercury in the two arms of the U tube is horizontal.

(density of water -1000kgm⁻³)

i. Calculate the density of oil

Figure 1

ii. Calculate pressure at mercury-water common interface(B)

The left arm of the above U tube now changed to a conical shape tube.

The same amount of mercury is used in the new U tube. (same levels of mercury are mentioned in figures 1 and 2 using the dotted lines).

The same amount of oil and water are now added to the left and right arm respectively.

- iii. Mention the new position of B respective to the level A.(above A, below A or same as level A)
- iv. A small wooden piece (less than the density of oil) is dropped in to the left arm of the U tube. If the wooden piece floats in the tube, then the pressure in the bottom of the tube will be increased, or decreased or not changed?

Figure 2

Figure 3

An object is suspended using a spring balance as shown in the above figure. The reading of the balance in the air is 17.8N and the reading when the object is fully immersed in the water is 16.2N.(density of water is 1000kgm⁻³)

- i. Calculate upthrust force when the object is in the water.
- ii. Calculate the volume of the object.
- iii. Calculate the density of the object.
- iv. When the object is removed, how does it affect with the pressure at the bottom of the container. Explain your answer.
- (C) The figure 4 shows a water fountain ejects water from a hole of radius 0.015m. Water ejects vertically upwards with a velocity of 6ms⁻¹. (density of water is 1000kgm⁻³).
 - i. Find the volume flow rate of water
 - ii. The water is supplied to the fountain by using a tube which is 2.5m below the hole of the fountain. The radius of the tube is 0.025m. Find the absolute pressure at a point of the tube which is 2.5m below the hole of the fountain.
 - iii. The owner needs to increase the height of the water column in the fountain up to 4m without changing the volume flow rate. This can be done by changing the radius of the hole in the fountain. Calculate the new radius of the hole of the water fountain.

Figure 4

03) (a) An object which is executing simple harmonic motion is represented by the equation $x=10 \sin 4\pi t$ where t (time) is measured in seconds and displacement (x) is measured in cm.

Find

- i. the amplitude, period, velocity of the motion when t=0
- ii. the amplitude and the velocity when t=T/8 where T is the periodic time of the motion
- (b) The lower end of a light helical spring(A) is attached to a mass of 0.2kg. Then the extension of the spring is 0.01m. When the spring is further extended to 0.01m distance and released, it executes simple harmonic motion.

Find

- i. The equilibrium position
- ii. The amplitude
- iii. The period
- iv. The period when the amplitude is doubled.

The lower end of another light helical spring(B) is attached to a mass of 0.4kg. Then the extension is 0.01m. Now the mass(0.02kg) of A is removed and the spring B is attached to the lower end of the spring A.

In the combined spring, Find

- i. The extension
- ii. Spring constant
- iii. The periodic time.
 - (c) As shown in the diagram a mass(A) of 200g is attached to a spring of spring constant 500Nm $^{-1}$ Another mass (B) is placed in the middle of the walls C and D. The natural length of the spring is 20cm and it is compressed by 4cm and released. Assume that the collisions are fully elastic and frictionless find the time between two consecutive collisions of B and D.

es Phy es Phy es Phy	s Physics Physics	Physics Physic De Physics Physics Physic Physics Physic	Mazenod C	oliege- Kan	dana ysic	s O1 E 11 ic
		G.C.E. Adı	vanced Level -	Term Test –	March 2018	
Physi	cs -Part		Grade :	12		Time-Two hours
		de ets C bez Vitanski vitani	Florest A. Cárson	admin and Wasse	a of to mail	Resource
	Answer all	the questions	Part A – Stru	ictal ed "p239.	<u>x</u>	R
01	to compa employing both A an arms of th a) Write densiti	are the densiting a third liquid at B. The level are U tube is how down the inequies of these liquids.	uality relationshi	Is A and B, niscible with C in the two fi p among the 3)	quid A lensity d ₁) h	liquid B (density d ₂) y liquid C (density d ₃) respectively. Write
	c) Why is	s it necessary t	o maintain xy hor		instruction of the literature of the lateral terms	
			nental procedure to nethod (sufficient	amount of liqui	ratio of the de	ensities of d ₁ and d ₂
				easurements of		on the density of C

terch 2018			enced Lev	љА.3.3.9
Time-Two i		s creation de la company de La company de la company d		1 1104 to
ii. The gradient of the	straight li	ne is as 0.	8 when A, E	3 and C are chosen as war
				ercury (density 13600kgm
respectively. Find th	e density o	of the coppo	er sulphate so	olution.
ppacaserscaperates and praced action		*>*30000378037440		96324384844694446356448238648848484839448
*\$***********************	>000000000000000000000000000000000	***********	.59	,
				sitisash ad samana at
iii. If it is desired to	measure tl	he height c	of the liquid	column with an accuracy
than 1% what will				
Dunti III 3 4 A bis	ipil.			***************************************
tiensial States Park 1	- 60 or	umme ni var	ojaler etiler	

the displacement of the per time period.	igninu boo t			motion varies with time over or
	Ŷ			
displaceme	1222		/	
		V		***************************************
tio of the describes of d_1 a	0		d from them	omhegas e time (5
.(bl/deltava eta	t of literalds	THE AND STREET	/m.,	
	. 1			
the sketch graph above,				
as a last with the latter A on	oint/points a	t which the ac	celeration of th	e pendulum bob is a maximum.
(ii) Label with the letter V a po	oint/points at	: which the sp	ead of the pend	minu pod is a maximum.
	i di di sine		edi vereses	C.1 111.41 I
	f the tension	in the string	at the midpoint	of the oscillation is grater than
Explain why the magmtude o the weight of the pendulum bo	L			

or a certain fre	quency, the pendulum bob oscillates t	naximum con	stant amplitude.
(D) On the	axes shown, sketch a graph to show		
variation of	amplitude A with frequency f.	4	_ <u> </u>
<u></u>			Point of suspension
A		1	(Unit ox Budget Diet
lige maleow to s	ob, whether same radius of ment spheri	d amfubasq s	
	and the second of		as salt au VVC traumbanen sid re
0	P	1	Pendulum bob
and the second		R E	
	a 1.1 1.1	- marinara a	ralitude explain the reason for
For a certain fr	equency, the pendulum bob oscillates	maximum an	iphitude, explain the reason to:
this.			
). If the percent	stage error of the certain frequency mea	brator.	
) . If the percent of the vibrat	or is 1Hz, find the frequency of the vi	brator.	ry and a free free to a free all all special designations described and constitutions of the constitution of the constituti
of the vibrat A student decide requencies(f) for) Write down an	or is 1Hz, find the frequency of the vi	ravity for this	method, and he measures the

	(Take $\pi = 3.1$) Developed a various of daily granupoit sidenes at returnly probable with similarity
	Work or plants a recent a common of the comm
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(e)	, Which is the best choice for the pendulum bob, whether same radius of metal sphere or wooden sphere
	for this experiment ? Give the reasons for your choice.
	171 For a certain disquence, the renddista, bob oscillates assistant amplificate, explain the reason for
	 (iii) If the conventage error of the certain frequency consecuration in the vibrator is 199 and the lasts on (iii) If the conventage error of the frequency of the vibrator.
	ord someone ad bus, builders sidt of streng of sub policeisons out aniaments or subject makers is (5)
	ciquig IVI eccusy of voir colessand over eccus egosmanii (ii)